MANAGEMENT OF NEUROPATHY DUE TO CANCER THERAPHY Kazim UYGUN MD Kocaeli University

WHAT IS NEUROPATHY

- n Neuropathy or periferal neuropathy is define as condition arising from the demage and dysfunction of the peripheral nerves
 - Motor
 - Sensory
 - Autonomic nerves
- n The major anotomic demarcation peripheral nervous system include
 - Nerve root
 - Plexus
 - Peripheral nerves

WHAT IS NEUROPATHY

- n Neuropathy is most common in people over age 55
- n Prevalence is %3-4
- n All level of the peripheral nervous system may be affected
- n There are more than 100 known types

WHAT IS NEUROPATHY

- n About a third of cases are caused by diabets
- n A third of cases are caused unknown
- n Chemotherapy induced neuropathy can be variable, but often ranges from 30-40% of patients received chemotherapy
- n CINP is a major dose limiting side effect of many chemotherapy agents

Incidence increases with:

- n Duration of infusion (longer infusion: increased chance)
- n Previous exposure to neurotoxic drugs
- n Combination chemotherapies (in which more than one neurotoxic drug is given)
- n Co-morbidities

Pathophysiology of CIPN

 n The Peripheral Nervous System (PNS)
communicates signals
between the central
nervous system (CNS) and
the periphery of the body

n The peripheral nerves originate from the spinal cord

Pathophysiology (continued)

n Pathogenesis of CIPN is not completely understood

- n Peripheral neuropathy results from damage to the
 - Axon,
 - Myelin sheath or
 - Cell body

Pathophysiology (continued)

- n In contrast to the blood brain barrier CNS, DRG and peripheral axons lack an efficient neurovascular barrier
- n Which allows the facile diffusion of large moleculer weight compounds in the DRG and axon filaments
- n İn addition to capillary fenestrations the vascular supply to the DRG and axons
- n This absence of a vascular barrier may an important role in CIPN devolopment

Pathophysiology (continued)

- n CIPN is usually symmetrical
- n Begins in distal end of longest axons
- n CIPN usually progresses from toes to feet to ankles to lower legs (stocking distribution)
- n Upper extremity damage usually comes later
- n Moves from fingertips to fingers to hands (glove distribution)

Nerve Growth Factor

- n Axons regenerate if toxic agent removed
- n Nerve Growth Factor (NGF) plays role in neuron repair
- n NGF is usually reduced after neurotoxic chemotherapy
- n Animal studies show if given NGF, some neuropathy and neural structural changes were prevented or reversed
- n Exact mechanism not well understood

Chemotherapeutic Agents Known to Cause Neuropathy

- Platinum-based agents
 - Cisplatin
 - Carboplatin
 - Oxaliplatin
- Vinca alkaloids
 - Vincristine
 - Vinblastine

- Taxanes
 - Paclitaxel
 - Docetaxel
- Epothilones
 - Ixebepalone
- Others
 - Bortezomib
 - Thalidomide
 - Lenolidamide

Methotrexate (Central toxicity)

Acut toxicity

- n Than 3 g/m² development of acute encephalopathy
- n Characterized primarily by somnolence, confusion, and seizures
- n Although the pathogenesis of this syndrome is unknown, folinic acid (leucovorin) diminished these metabolic effects

Subacute Toxicity

- n Develops weeks after methotrexate administration
- n Most frequently received cranial radiation
- n Completely reversible in weeks, and steroid treatment may accelerate recovery. Chronic Neurotoxicity
- n Known as leukoencephalopathy.
- n Develops months to years after methotrexate (IV or IT)
- n Cranial radiation and younger patients higher risk for leukoencephalopathy
- n Clinically, progressive loss of cognitive function may progress to profound dementia, coma, or death.
- n No treatment is known, and the neurologic deficits generally are irreversible.

Ifosfamide (Central toxicity)

- The most common manifestation with ifosfamide is encephalopathy. n
- Severe ifosfamide-induced encephalopathy has been reported in children and n adults.
- Symptoms usually begins within hours n
- Confusion, hallucinations, and aphasia are the most common initial signs. n
- Progression to coma generally is rapid. EEG shows severe slowing with delta wave activity and can display evidence of seizure activity. n
- Persistent mental status changes in some patients 10 weeks after treatment. n
- A recent study of 60 patients ifosfamide neurotoxicity to be 26% n
- **Riks** factors include n
 - Low serum albumin concentration,
 - High serum creatinine, pelvic cancer and Previous treatment with cisplatin \bullet
- These abnormalities resolved over several days. n

Cisplatin / Carboplatin:

- n Affects 57-92% of patients undergoing chemotherapy
- n DRG neuropathy and axonal swelling and loss
- n Progress from sensory, to motor and (rare) autonomic symptoms
- n Can occur later in treatment course
- n Causes loss of sense of position, vibration and paresthesias
- n 66% of patients have full recovery
- n Some patients can take two years for recovery to occur

Oxaliplatin

- n Alters neuron excitability axon conduction
- n Causes sensory neuropathy of large fibers
- n 80% of patients develop
- n 40% of those who develop have resolution of symptoms in 6-8 months
- n Can cause acute neuropathy (30-60 min after infusion)
- n May be associated with calcium chelation by oxalate released from the drug, adversely affecting ion channels and synaptic transmission
 - Cramps/spasms in hands and feet
 - by cold weather
 - Causes sensation of loss of breath, jaw tightness

Paclitaxel and Docetaxel

- n Risk depends on dosing & use with other neurotoxic agents
- n Disrupt axonal transport via microtubule damage
- n Paclitaxel causes CIPN in 60% of patients
- n Docetaxsel causes CIPN in about 49% of patients
- n Affect small fibers, causes axonal injury, and demyelinization
- n Altered vibratory, sense loss of deep tendon reflexes, paresthesias
- n Causes progressive neurological dysfunction

Vincristine, Etoposide, Vinorelbine & Vinblastine:

- n Risk depends on dosing & use with other neurotoxic agents
- n Greatest potential for CIPN is Vincristine: Occurs in about 57% of patients
- n Degenerates the peripheral nerve fibers
- n Affects small and large fibers
- n Causes most commonly:
 - motor and sensory disruption;
 - can cause autonomic effects
- n Paresthesisas, then progresses to muscle cramping/weakness, constipation, bladder dysfunction, altered heart rate

Thalidomide / Bertazomib

- n Thalidomide oral immunomodulator agent used in the treatment for patients with multiple myelome
- n CIPN is a common potentially severe side effect
- n Thalidomide caused distal axonal degeneration without demyelination, incidance 30%
- n Bertazomib also used for the treatment MM
- n Bertazomib is reversibl inh. of proteasome
- n Tocity is predominantly sensory and motor involvement,
- n Incidance 37%

Antineoplastic Agents Known to Induce Neuropathy

<u>Drug</u>	Incidence %	Onset dose	<u>Recovery</u>
Cisplatin	28-100	300mg/m ²	months
Carboplatin	6-42	800-1600mg/m ²	months
Oxaliplatin			
Acute Chronic	85-95 10-18 _(severe)	any 750-850mg/m²	with in a week months
Vinca alkaloids	30-47	4-10 mg	months
Paclitaxel	57-83	100-300mg/m ²	months
Docetaxel	11-64	75-100mg/m ²	months
Thalidomide	28-83	20gr	1 year
Bortezomib	31-55	1.3mg/m ²	months

Signs and Symptoms of CIPN

- n Symptoms that patients may experience depend on
 - Length of infusion,
 - Dose
 - Co-morbidities
 - Other neurotoxic drugs

n Symptoms are divided into

- Sensory
- Motor
- Autonomic symptoms,

Sensory Symptoms include:

- n Paresthesia:
 - feeling of warmth,
 - burning, tingling,
 - cold, pinprick sensation,
 - numbness
- n Hyperesthesia:
 - increased sensitivity to sensory stimulus,
 - not painful, but can cause cramping, usually worse at night
- **n** Hypoesthesia:
 - Decreased feeling sensations
- n Hyporeflexia:
 - Decreased deep tendon reflexes

Sensory Symptoms include:

n Dysesthesia:

- Abnormal sensation in skin
- Feels like electric sensation,
- Tingling, prickling of the skin

n Diminished/absent

- Vibration sensation
- Cutaneous sensation
- Feeling object as sharp or dull

n Pain:

- Can be burning, shooting, sharp
- n Numbness/tingling

Figure 1 Symptoms of chemotherapy-induced peripheral neuropathy. Adapted from: Simpson DA, Tagliati M, Gonzales-Duarte A, Mongello S. Neurologic manifestations. In: Mildvan D, ed. International Atlas of AIDS, 4th edition. Hoboken, NJ: Current Medicine Group LLC; 2007; with permission.

Motor Symptoms Include:

- n Weakness
- n Gait disturbance
- n Balance disturbance
- n Difficulty with fine motor skills
 - Writing,
 - Buttoning
 - Clothing,
 - Sewing

Autonomic symptoms include:

- n Constipation
- n Urinary retention
- n Sexual dysfunction (erectile dysfunction in men)
- n Blood pressure changes

Assessment of CIPN

n Baseline neurological assessment is key

n Must assess

- All motor,
- Sensory, and
- Autonomic function not only before start of treatment, but during and after as well

Assessment of CIPN

NCI-CTCAE (National Cancer Institute Common Terminology Criteria for Adverse Effects) assesses from Grades 1-4 of Sensory and Motor function:

n Grade I: Asymptomatic

n Grade II: Some sensory alteration or weakness

n Grade III: Interfering with activities of daily living

n Grade IV: Life threatening and disabling (paralysis)

Grading Scales for Neuropathy

Scale	Grade 1	Grade 2	Grade 3	Grade 4
NCI-CTCAE Sensory Motor	No symptoms, loss of DTR	Paresthesia, ADL ok	Paresthesia, ADL interference	Disabling
ECOG Sensory Motor	Mild Paresthesia Loss DTR	Sensory loss Paresthesia Weakness	Severe sensory and motor loss with function	Paralysis
WHO	Paresthesia Decreased DTR	Severe paresthesia Weakness	Intolerable	Paralysis

Postma TJ. Annals Oncol 9:739-744, 1998

- n Some conditions or co-morbidities make patients more prone to developing CIPN complication than other patients
- n The following is a list of other factors that, if present in a patient undergoing chemotherapy with a neurotoxic drug, may put them more at risk for developing CIPN
- n It's essential to assess for risk factors to determine who will need close monitoring during treatment!

- n Endocrine diseases include:
 - Diabetes mellitus (Can causes small fiber injury)
 - Hypothyroidism

n Infectious diseases include:

- HIV/AIDS
- Lyme disease
- Herpes zoster
- n Hereditary diseases include:
 - Charcot-Marie-Tooth syndrome (Causes large fiber injury)
 - Freidreich's ataxia

n Nutritional diseases include:

- Alcoholism
- Vitamin B12 deficiency (causes large fiber injury)
- Thiamine deficiency
- Vitamin E deficiency
- Folate deficiency

n Crohn's disease

- n Connective tissue diseases:
 - Rheumatoid arthritis
 - Lupus

n Metal neuropathy:

- Mercury
- Gold
- Thallium
- n Other:
 - Amyloidosis
 - Ischemic lesions, Atherosclerotic heart disease
 - Sarcoidosis
 - Biliary cirhosis
 - Uremia
 - Vasculitis

Medications Including

- Colchicine
- Isoniazid
- Hydralazine
- Metronidazole
- Lithium

- Phenytoin
- Cimetadine
- Amiodarone
- Pyridoxine
- Amitriptyline

Treatment of CIPN

n PREVENTION MANAGEMENT

n SYMPTOM MANAGEMENT

PREVENTION

n Many agents have been proposed for preventing neuropathy caused by antineoplastic drugs

- n Most of these drugs might minimize neuropathy are based on limited preclinical data
- n A few have been evaluated in randomized controlled trials
- n Most have been assessed during platinum based chemotherapy

Vitamin E:

- n Protects against cell damage such as numbness, tingling, burning, and pain in periphery caused by Cisplatin and other chemotherapy drugs
- n Studies show those who received Vitamin E supplementation during and after chemotherapy reported less CIPN
- n Possibly a relationship between Cisplatin neurotoxicity and Vitamin E deficiency
- n Vitamin E receiving 300-400mg/d
- n There are small randomized trails
 - 47 patiensà (31% versus 86% p: 0.01)
 - 32 patients à (25% versus 73% p:0.026)

Calcium/Magnesium infusions:

- n Oxalate, found in Oxaliplatin, binds to Calcium and Magnesium
- n This may deplete these essential elements and be responsible for the neurotoxicity of Oxaliplatin
- n Retrospective trail 161 patients à 20% versus 45% (p:0.003)
- n Two Prospective trail: 1 gr Ca-Mg before Oxa inf
 - N0C7 studyà reduction in CIPN incidence
 - CONCEPT trail was early terminated worse tumour-related outcomes
- n Prospective randomized controlled trials are imperative

Amifostine:

- n Chemoprotectant
- n Detoxifies chemotherapy drugs
- n Facilitates DNA repair of cells
- n Does not interfere with chemotherapy effectiveness
- n In lab animals, shows sparing of nerve fibers
- n In some human trials, it seems ineffective in preventing or reducing paclitaxel and cisplatin induced PN
- n Needs more research with other chemotherapy drugs

Glutathione and N-acetylcysteine

- n May hamper initial accumulation of platinum agents in peripheral nerve cells
- n Two small randomised trails suggest that glutathione was benefical for prevention cispaltin and oxliplatin induced neuropathy
- n Another trail addition of glutathion to cisplatin reduced toxicity and allowed more cycle of treatment to be administered
- n N-acetylcysteine an antioxidant drug which increases whole blood concentrations of glutathione, demonstrated a suggestion of benefit in preventig CIPN in patients receiving oxaliplatin

Glutamine:

- n Amino acid, may have neuroprotecive properties
- n Upregulates NGF
- n In studies, those who take it for Paclitaxel preventive CIPN showed less weakness, loss of vibratory sensation, and toe numbress versus control group
- n 86 patients receive Oxaliplatinà 30mg / 7d, gr III-IV neuropathy (5% v 18% p:0.005)
- n There are needed larger randomised trial before recommended routine practice

Antiepileptic agents (Carbamazepine, Oxcarbazepine)

- n Carbamazepine an antiepileptic agent that inhibibits sodium channel activity has been suggested to have a role in perventing oxaliplatin neuropathy
- n Nonetheless, results of a pilot trial (n:12) testing carbammazepin for this indication were not supportive
- n Oxcarbazzepine a ketanalogue of carbamazepine
- n Small randomised trial suggest may protect aganist oxaliplatin induced neuropathy
- n A larger randomized trial is needed to confirm these results.

Acetyl-L-carnitine and Xaliproden:

- n Acetyl-L-carnitine tested in presence of preexisting Taxol or Cisplatin-induced CIPN
 - Very small studies have been performed, but look promising
- n Xaliproden Oral neuroprotecive drug, NGF analog
 - Incidence of Grade 3-4 CIPN was 39% less in patients who received oxaliplatin versus placebo
 - A phase III trial is ongoing

Agents for Prevention CIPN (positive findings randomised

controlled trials)

Vitamin E	n	CIPN%	
Pace 2003	47	31	86 p<0.001
Argyriou 2005	40	25	73 p<0.019
Argyriou 2006	35	21	66 p<0.026
Pace 2007	81 CIF	PP score lower	in the vitamin E group p<0.05
Calcium/magnesium			
Nikcevich 2008	104	28	51 p<0.02
Glutamine			
Wang 2007	86	12	32 P<0.04
Glutation			
Cascinu 2002	52		P<0.04
Smyth 1997	152	31	75 p<0.03
Cassinu 1995	50	17	84 p<0.0001
N-acetylcysteine			
Lin 2006	14	5/7	0/7 p<0.05
Oxcarbazepine			
Argyriou 2006	40	31	75 P< 0.03
Xaliproden			
Cassidy 2006	649	11	17

Agents for Prevention CIPN

Negative Findings Randomised Controlled Trials

- Amifostine
- Nimodipine
- Org 2766 (Adrenocorticotrophic hormone analogue)
- rhuLIF (Recombinant human leukaemia inhibitory factor)

Ongoing Phase III Radomized Controlled Trials

- Vitamin B12/B6 (essential for nerve function)
- Acetyl-L- carnitine (oxidation of free fatty acids/nerve)
- Alpha lipoic asid (antioxidant)

Symtomatic Treatment of CIPN

- n Aim to relieve the symptoms of CIPN
- n This a problem in all patients with PN regardles of aetiology
- n Majority of trials symptomatic neuropathies especially those related diabetes mellitus
- n Most agents tried have been
 - Anticonvulsants or antidepressants
- n Unfortunately when these data are extrapolated to CIPN
- n May be due to different qualities and pathophysiologies of toxic CIPN and other aetiologies

Sysmtomatic Treatment of CIPN Randomised Controlled Trials

	Patients	Findings
Nortriptyline Hammack 2002	57	no CIPN benefit observed
Amitriptyline Kautio 2008	44	no CIPN benefit observed
Gabapentin Rao 2007	115	no CIPN benefit observed
Lamotrigine (anticonv) Rao 2008	131	no CIPN benefit observed

Agents for Pain Management in Neuropaty

Duloxetine (antidep)

Gabapentin

5% lidocaine patch

Opioid (Oxycodona Morphine, methadone)

Pregabalin

Tramadol

TAD (amitryl,nortryl,desipmn)

Dose 30-120mg/d 300-3600mg/d 3 patch/d 5-15mg / every 4h 50-200mg/every 8h 50-400mg/d 10-150mg/d

Paclitaxel Acute Pain Syndrome

- n These symptom begin 1-3 days after drug administration
- n Generally self limited, often resolving within 7 days
- n Pain described in large axial muscular and joint regions
- n Neorologic and musculoskeletal examinaton is normal
- n Pain syndrome distinct from paclitaxel assosiated peripheral neuropathy
- n Commonly treated with
 - NSAİD
 - Acetaminophen
 - Opioid

Summary

- n Neuropathy or periferal neuropathy is define as condition arising from the demage and dysfunction of the peripheral nerves
- n Chemotherapy induced neuropathy can be variable, but often ranges from 30-40% of patients received chemotherapy
- n Pathogenesis of neuropathy is not completely understood
- n This absence of a vascular barrier may an important role in CIPN devolopment

Summary

- n Some conditions or co-morbidities effect developing CIPN
- n CIPN is full recovery generaly of patients
- n Some patients can take two years for recovery to occur
- n Treatment of CINP is prevention and symptom management
- n Symptom teratment is not effected