

Annual Meeting'12

LUNG CANCER

Başak Oyan-Uluç, MD Yeditepe University Hospital Medical Oncology

Best of ASCO, İstanbul 2012

23.6.2012

Treatment of Metastatic NSCLC

- EGFR targetted treatments
 - 1st line: EGFR-mutated: Afatinib vs chemotherapy
 - 2nd line:
 - TAILOR: Docetaxel vs erlotinib in EGFR-wild type
 - SELECT: Chemo± Cetuximab
- Chemotherapy
 - Treatment in ECOG PS 2 patients: Pem+carbo vs. Pem
 - Maintenance:
- Novel agents
 - ROS1: Crizotinib
 - k-ras mutant pts: Selumetinib
 - Immunotherapy: Anti-PD1

Treatment of Metastatic NSCLC

- EGFR targetted treatments
 - 1st line: EGFR-mutated: Afatinib vs chemotherapy
 - 2nd line:
 - TAILOR: Docetaxel vs erlotinib in EGFR-wild type
 - SELECT: Chemo± Cetuximab
- Chemotherapy
 - Treatment in ECOG PS 2 patients: Pem+carbo vs. Pem
 - Maintenance:
- Novel agents
 - k-ras mutant pts: Selumetinib
 - ROS1: Crizotinib
 - Immunotherapy: Anti-PD1

LUX-LUNG 3: Ph III, 1st line, EGFR mutated Afatinib vs. Pem/cis Yang et al (A#LBA7500)

- Afatinib is an orally available, <u>irreversible</u> ErbB Family Blocker, with high efficacy potential
 - Inhibition of ErbB Family receptor heterodimerization
 - In vitro activity against EGFR-resistant T790M mutation

EGFR mutated NSCLC: Afatinib vs. Pem/Cis

Med follow-up: 16.4 mo

[†] Dose escalated to 50 mg if limited AE observed in cycle 1. Dose reduced by 10 mg decrements in case of related G3 or prolonged G2 AE.

Primary endpoint: PFS Independent review – all randomized patients

All Randomized patients

Common mutations (Del19/L858R)

(n=345)

(n=308)

Summary

- Afatinib vs. Pem/Cis:
 - Increased PFS
 - More response (%56.1 vs. %22.6)
 - Better QOL

Adverse events

- Similar rates of Grade 3-4 AE
- Afatinib: More Diarrhea, Rash/acne, Stomatitis/mucositis

Selected trials of TKI 1st line EGFR mutation (+) NSCLC

Study		RR	PFS	OS
IPASS	Carbo/Pac	41.3	5.5	.78 (0.5-1.2)
	Gefitinib	71.2	9.0	
EURTAC	Cis/Doc or Cis/Gem	15%	5.2	.80 (.47-1.37)
	Erlotinib	58%	9.7	
LUX LUNG 3	Cis/Pem	22.6	6.9	NR
	Afatinib	56.1	11.1 (13.6)	

Implications

- Afatinib > Pem/cis in 1st line, EGFR muta (+) NSCLC
- Afatinib:
 - Better than Erlotinib/gefitinib? (LUX-Lung 7)
 - Toxicity:
 - Similar?
 - Seems to have more toxicity
 - Does potential increased efficacy outweight any SAE?
- Largest trial in EGFR mutated pts
- Both Asian and European pts

TAILOR: 2nd line, Phase III Docetaxel vs. Erlotinib in EGFR-wild Garassino et al (A#LBA7501)

Unselected NSCLC, 2nd and 3rd line treatment

- EGFR TKI vs. chemotherapy (5 RCTs)
 - Similar OS*
 - INTEREST (Docetaxel vs. Gefitinib as 2nd or 3rd line): Similar outcome
 - Only 2 trials reported outcomes by EGFR mutational status (unplanned analyses) in about 18% of randomized patients

* Ciuleanu T, J Clin Oncol 2012; Kim ES, Lancet 2008; Maruyama R, J Clin Oncol 2008; Lee DH, Clin Cancer Res 2010; Vamvakas L, ASCO Proc 2010

INTEREST: PFS according to EGFR mutation status Unplanned analysis

EGFR mutation (+)

Gefitinib is better

EGFR wild type

Docetaxel and pemetrexed similar

JY Douillard et al. JCO 2009

2nd line Docetaxel vs. Erlotinib in EGFR-wild

OS: Required number of deaths not yet reached

Better PFS with docetaxel

Better Response Rate with Docetaxel

	Docetaxel n=94	Erlotınıb n=92	χ² test
RR (CR+PR)	13.9 %	2.2 %	p=0.004
DCR (CR+PR+SD)	41.5 %	22.8 %	p=0.007

Conclusions and implications

 TAILOR: Only prospective head-to-head trial comparing erlotinib vs docetaxel in wild-type EGFR patients

- 2nd line treatment in EGFR wild-type pts:
 - Docetaxel > Erlotinib

 As in 1st line, do not use erlotinib without EGFR mutation analysis in 2nd line

Treatment of Metastatic NSCLC

- EGFR targetted treatments
 - 1st line: EGFR-mutated: Afatinib vs chemotherapy
 - 2nd line:
 - TAILOR: Docetaxel vs erlotinib in EGFR-wild type
 - SELECT: Chemo± Cetuximab
 -> Negative trial
- Chemotherapy
 - Treatment in ECOG PS 2 patients: Pem+carbo vs. Pem
 - Maintenance:
- Novel agents
 - k-ras mutant pts: Selumetinib
 - ROS1: Crizotinib
 - Immunotherapy: Anti-PD1

Treatment of Metastatic NSCLC

- EGFR targetted treatments
 - 1st line: EGFR-mutated: Afatinib vs chemotherapy
 - 2nd line:
 - TAILOR: Docetaxel vs erlotinib in EGFR-wild type
 - SELECT: Chemo± Cetuximab
- Chemotherapy
 - Treatment in ECOG PS 2 patients: Pem+carbo vs. Pem
 - Continuation Maintenance
- Novel agents
 - k-ras mutant pts: Selumetinib
 - ROS1: Crizotinib
 - Immunotherapy: Anti-PD1

ECOG PS 2 patients: Pem+carbo vs. Pem Lilenbaum et al (A#7506)

patients had been enrolled at that time

- Dexamethasone 4mg po BID the day before,
- the day of, and the day after

Carbo +Pem vs Pem

Combination

- More pts completed therapy: 61% vs 39%
- Better ORR: 25% vs 10.5% (P < 0.029)

Toxicity

- G3-4 toxicity: Similar between arms
- Toxic death:
 - CP: 3.9%, P: 0% (p: 0.121)

Carbo+Pem: Better PFS and OS

PFS

OS

Implications for Practice

- In PS 2 patients:
 - Platin combinations better than single agent
 - Pem+carbo- > Tolerable
- PS 2 pts
 - Non-squamous: Pem+carbo >Pem
 - Gemcitabine+carbo
 - Weekly Paclitaxel + monthly carbo

PARAMOUNT: Maintenance with Pemetrexed after Pem+Cis induction Paz-Arez et al (A#LBA7507)

Continuation maintenance with pemetrexed: Improves survival

	Pemetrexed	Placebo	HR	P value
OS from randomization	13.9 mo	11 mo	0.78	0.0195
			(0.64–0.96)	
OS from induction	(16.9 mo)	14 mo	0.78	0.0191
			(0.64–0.96)	
PFS	3.9 mo	2.6 mo	0.60	<0.0001
			(0.50-0.73)	

Benefit in all subgroups

PARAMOUNT: Conclusions

- Survival is significantly improved with pemetrexed continuation maintenance therapy (HR=0.78)
- First study to show continuation maintenance has an impact on the disease course of advanced NSCLC (including PFS and OS)
- A change in the treatment paradigm

Treatment of Metastatic NSCLC

- EGFR targetted treatments
 - 1st line: EGFR-mutated: Afatinib vs chemotherapy
 - 2nd line:
 - TAILOR: Docetaxel vs erlotinib in EGFR-wild type
 - SELECT: Chemo± Cetuximab
- Chemotherapy
 - Treatment in ECOG PS 2 patients: Pem+carbo vs. Pem
 - Maintenance:
- Novel agents
 - ROS1: Crizotinib
 - k-ras mutant pts: Selumetinib
 - Immunotherapy: Anti-PD1

Crizotinib in advanced NSCLC with ROS1 rearrangement Shaw et al (A#7508)

ROS1 Rearrangements in NSCLC

- Present in ~1% of NSCLC cases (also found in some GBMs and cholangiocarcinomas)
- ROS1: Encodes receptor tyrosine kinase
- Enriched in:
 - Younger
 - Never or light smokers
 - Adenocarcinoma
- No overlap with other oncogenic drivers

Phase 1 Study of Crizotinib (PROFILE 1001)

- N: 15
- ROS1 rearrangement(+)

"Break-Apart" FISH Assay for ROS1 Rearrangement

• Crizotinib: TKI of c-MET, ALK and ROS1

Tumor Responses to Crizotinib in Patients with Advanced ROS1+ NSCLC (N=14*)

*Response-evaluable population. [†]Tumor ROS1 FISH-positive, but negative for ROS1 fusion gene expression. [‡]Crizotinib held for >6 wks prior to first scans which showed PD. **+, Treatment ongoing.**

Summary

- ROS1 rearrangement
 - A distinct subset of NSCLC
 - A new therapeutic target in lung cancer

 Crizotinib: Marked antitumor activity in patients with advanced ROS1-positive NSCLC

Doce ± Selumetinib in k-ras mutant advanced NSCLC as 2nd line Janne et al (A#7503)

K-ras mutant NSCLC

- %20
- Resistant to EGFR TKI
- Effectiveness of chemotherapy may be reduced

Selumetinib

Doce ± Selumetinib in k-ras mutant NSCLC: Phase II double blind

Janne et al (A#7503)

Addition of selumetinib to docetaxel

- Non-significant increase in OS
 - 9.4 mo vs. 5.2 mo (HR: 0.80, P=0.20)
- Toxicity increased
- Improved RR (37% vs 0%, P<0.0001)
- Improved PFS

- 5.3 mo vs. 2.1 mo (HR: 0.58, P=0.0138)

Janne et al (A#7503)

Conclusion

- 1st prospective study demonstrating clinical benefit in k-ras mutant NSCLC
- OS (primary endpoint): not improved significantly -> Negative trial
- Promising, further investigation needed

Anti-PD-1 (BMS-936558, MDX-1106) in advanced NSCLC Brahmer et al (A#7509)

- Immunotherapy in NSCLC: Not successful
- Tm resist immune attack by inducing tolerance among tumor-specific T cells
- Check-point inhibitors in NSCLC:
 - Preliminary evidence of activity with CTLA-4 and chemotherapy ^{1,2}
 - İpilumumab +Pacli/carbo: Improve PFS
 - Esp. in squamous cell ca

¹Lynch TJ, et al. J Clin Oncol. 2012. ²Genova C, et al. Expert Opin Biol Ther 2012.

CTLA-4 and CD28 interaction: Happens primarily in the priming phase of T-cell response within lymph node

Role of PD-1 in Suppressing Antitumor Immunity

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Role of PD-1 in Suppressing Antitumor Immunity

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Role of PD-1 in Suppressing Antitumor Immunity

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Phase I Multi-dose Regimen BMS-936558: Anti-human PD-1 blocking Ab

Doses tested for NSCLC: 1, 3, 10 mg/kg

Eligibility: Advanced MEL, RCC, NSCLC, CRC, or CRPC with PD after 1-5 systemic therapies

Baseline Characteristics

Baseline Characteristic	n=122					
Median age (range), yr	65 (38-85)					
Male, no. (%)	74 (61)					
Tumor histology, no. (%)*						
Squamous	47 (39)					
Non-squamous	73 (60)					
ECOG PS, no. (%) [†]						
0-1	117 (96)					
2	2 (2)					
Number of prior therapies, no. (%) [‡]						
1-2	49 (40)					
≥3	67 (55)					
Nature of prior therapy, no. (%)						
Platinum-based chemotherapy	115 (94)					
Tyrosine-kinase inhibitor	41 (34)					
Radiotherapy	40 (33)					

*Unknown: 2 (2%). [†]Not reported: 3 (2%). [‡]Not reported: 6 (5%).

Evaluation of safety: 122 NSCLC pts

Evaluation for clinical activity: 76 NSCLC pts

Key Safety Results

Adverse E	vents (AEs)	Ipilimumab ¹ N= 131 (%)	BMS-936558 N=122 (%)	
Any AE		96.9	64	
Grade 3	3 - 4	45.8	8	
Diarrhea		32.8	6	
Grade 3	3 - 4	5.3	1	
Fatigue		42	18	
Grade 3	3 - 4	6.9	2	
Dyspnea /	Pneumonitis	14.5	5	
Grade 3	3 - 4	3.9	3*	
Any immu	ne-related AE	61.1	?	
Grade 3 / 4		14.5	?	
1 Hodi et al. NEJM 2	010		* 2 deaths	

Clinical Activity of BMS-936558 in NSCLC Patients

Рор	Dose	Pts	ORR	Duration of	SD ≥24 wk	PFSR at
	(mg/kg)	n	n (%)	Response (mo)	n (%)	24 wk (%)
ALL NSCLC	1-10	76	14 (18%)	1.9+ to 30.8+	5 (7)	26

Deveneter		BMS-936558 Dose, mg/kg	
Parameter	1	3	10
ORR, No. patients* (%)			
Squamous	r	6/18= 33%	3 (43) n=7
Non-squamous	N=12	7/56= 12.5%	4 (13) n=31

• 3 NSCLC patients had a persistent reduction in baseline target lesions in the presence of new lesions but were not classified as responders for the ORR calculation

Conclusions

- Anti-PD1 Ab
 - safe in heavily pretreated NSCLC patients
 - Durable clinical benefit was seen in both squamous and non-squamous NSCLC

- Preliminary data:
 - Response correlates with PD-L1 expression in pretreatment tumor biopsies

• SCLC:

RT starting with 1st or 3rd cycle of cis-etoposide in limited stage

• Stage III NSCLC:

Consolidation vs none after concomitant chemoRT

- Squamous cell ca: Genomic alterations
- **Diagnosis:** Accuracy of FDG-PET

• SCLC:

RT starting with 1st or 3rd cycle of cis-etoposide in limited stage

• Stage III NSCLC:

Consolidation vs none after concomitant chemoRT

- Squamous cell ca: Genomic alterations
- Diagnosis: Accuracy of FDG-PET

Limited Stage SCLC: Concurrent Thoracic Radiotherapy (TRT) with Either the 1st Cycle or the 3rd Cycle of Cisplatin and Etoposide Chemotherapy K. Park et al. (A#7004)

Background

- Standard in limited stage: concurrent thoracic radiotherapy (TRT) with chemotherapy
- Optimal timing: Not defined
- Limitations in early initiation of TRT given with the 1st cycle
 - Potentially enlarged radiation fields due to initial planning for bulky tumors
 - Complexity of administering TRT results in delayed overall treatment for LD-SCLC

Study design

- Primary end point: Complete response rate (WHO criteria)
- Secondary end point: ORR, OS, PFS, and toxicity (NCI-CTC ver. 2.0)
- *Stratified by the institute
- Response evaluation: every 2 cycles during treatment, every 3 mo. for 1 Y, and then every 6 mo.

Results

CR rates are similar

	Initial Arm	Delayed Arm	95% CI
	(n = 111)	(n = 108)	of the difference
CR	40 (36.0%)	41 (38.0%)	(-14.7%, 10.9%)

• PFS and OS are similar

• TRT with the 3rd cycle of EP: Lower incidence of neutropenic fever (21.6% vs. 10.2%)

Conclusion

Concurrent TRT with the 3rd cycle of EP chemotherapy was <u>non</u> <u>inferior</u> to the 1st cycle of EP chemotherapy

• SCLC:

RT starting with 1st or 3rd cycle of cis-etoposide in limited stage

- Stage III NSCLC: Consolidation vs none after concomitant chemoRT
- Squamous cell ca: Genomic alterations
- Diagnosis: Accuracy of FDG-PET

Stage III NSCLC: Consolidation or not Background

- Standard LA-NSCLC: Concurrent chemoradiotherapy
- Consolidation chemotherapy:
 - Limited data: Few randomized studies
 - HOG LUN 01-24 trial: n: 243 → Consolidation did not improve survival

1) Hanna N et al; J Clin Oncol 26: 5755-5760, 2008.

A pooled analysis of the literature: Yamamoto et al (A#7000)

- Systematically searched PubMed for phase II or phase III trials published between January 1, 1995 and October 31, 2011.
- 45 studies, n: 3447
 - CCT(-): 1740 pts
 - CCT(+): 1707 pts

Individual and pooled median OS

Toxicities throughout the whole treatment courses were comparable.

Stage III NSCLC: Consolidation or not IMPLICATIONS

- Many oncologists are uncomfortable with only 2 cycles of chemo in stage III dis
 - Stage II-IIIA: Adjuvant 4 cycles
 - Neoadjuvant: 3 cycles
- Systemic relapses remain an important issue
- Will we change our practice based on these trials?
 - Metanalysis: Heterogenous trials, Phase II and III together
 - Rando trials: small sized (<300 pts)
- Many ongoing trials are built on consolidation platform

Consolidation or not

- Consolidation: Not improve survival
- Consolidation chemotherapy after concomitant chemoRT: can not be recommended

• SCLC:

RT starting with 1st or 3rd cycle of cis-etoposide in limited stage

• Stage III NSCLC:

Consolidation vs none after concomitant chemoRT

- Squamous cell ca: Genomic alterations
- Diagnosis: Accuracy of FDG-PET

Squamous cell carcinoma: Genetic alterations and actionable targets

Govindan et al (A#7006), Paik et al (A#7505)

Multiplex Testing Of Squamous Cell Lung Cancers To Direct Treatment

SQ-MAP integrated results

Multiplex Testing Of Squamous Cell Lung Cancers To Direct Treatment

SQCLC matched therapies Memorial Sloan-Kettering

• SCLC:

RT starting with 1st or 3rd cycle of cis-etoposide in limited stage

• Stage III NSCLC:

Consolidation vs none after concomitant chemoRT

• Squamous cell ca: Genomic alterations

• **Diagnosis:** Accuracy of FDG-PET

Accuracy of FDG-PET to diagnose lung cancer in the ACOSOG Z4031 trial Grogan et al (A#7008)

Background

 NCCN guidelines: FDG-PET for <u>diagnosis</u> of suspected NSCLC

• Trial:

- Accuracy of FDG-PET to <u>diagnose</u> NSCLC in patients undergoing resection for c-Stage I disease in a national population
- n:682

¹Gould et.al. JAMA 2001 ²Deppen et.al. Ann Thor Surg 2011 ³Croft et.al. Lung Cancer 2002

Results – FDG-PET

	ACOSOG Z4031	Metaanalysis
Malignancy	566 (83%)	
Accuracy (TP+TN)/N	73%	
Sensitivity	82%	94%
Specificity	31%	83%
Positive Predictive Value	85%	
Negative Predictive Value	26%	

FDG-PET Results by Size

Take Home Messages CURRENT PRACTICE

- FDG-PET in diagnosis: We need to question our relience on PET.
- Stage III NSCLC: No data to support use of consolidation chemotherapy after concurrent chemoRT.
- Limited stage-SCLC: We can delay RT up until 3rd cycle
- EGFR mutation status is important not only in 1st line but also 2nd line treatment selection
 - EGFR wild NSCLC: Docetaxel > Erlotinib

Take Home Messages CURRENT PRACTICE

- ECOG PS 2 patients: Platin combination is better than single agent
 - Pemetrexed +carbo >Pemetrexed
- Maintenance:
 - What we knew -> Switch maintenance improves OS
 - After ASCO 2012 -> Continuation maintenance with pemetrexed also improves OS

Take Home Messages FUTURE

- Making great progress in molecular understanding of NSCLC
 - Squamous cell: Genomic alterations ->Actionable targets
- Afatinib: A new 1st line treatment option against EGFR-muta (+) NSCLC
 - Better than 1st generation EGFR TKI?
- Novel agents:
 - ROS1: Crizotinib
 - K-ras: Selumetinib is promising
- Immunotherapy: Anti-PD1 antibody (BMS-936558) ->MOST PROMISING AGENT OF ASCO