Clinical Activity and Safety of Anti-PD-1 (BMS-936558, MDX-1106) in Patients with Advanced Non-Small-Cell Lung Cancer

J.R. Brahmer,¹ L. Horn,² S.J. Antonia,³
D. Spigel,⁴ L. Gandhi,⁵ L.V. Sequist,⁶ J.M. Wigginton,⁷
D. McDonald,⁷ G. Kollia,⁷ A. Gupta,⁷ S. Gettinger⁸

 ¹Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD;
²Vanderbilt-Ingram Cancer Center, Nashville, TN; ³H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ⁴Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN; ⁵Dana-Farber Cancer Institute, Boston, MA;
⁶Massachusetts General Hospital Cancer Center, Boston, MA; ⁷Bristol-Myers Squibb, Princeton, NJ; ⁸Yale University School of Medicine, New Haven, CT

Background

Immunotherapy in NSCLC:

- Immunotherapy historically not successful in NSCLC
- Resurgence of interest over past decade
- Vaccines
- Check-point inhibitors:
 - Preliminary evidence of activity with CTLA-4 and chemotherapy ^{1,2}

¹Lynch TJ, et al. J Clin Oncol. 2012. ²Genova C, et al. Expert Opin Biol Ther 2012.

Role of PD-1 in Suppressing Antitumor Immunity

Activation (cytokines, lysis, prolif., migration)

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Role of PD-1 in Suppressing Antitumor Immunity

(cytokines, lysis, prolif., migration)

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Role of PD-1 in Suppressing Antitumor Immunity

(cytokines, lysis, prolif., migration)

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Role of PD-1 Pathway in NSCLC

- PD-1 expression on tumor infiltrating lymphocytes (TILs) in NSCLC has shown:
 - Decreased cytokine production and decreased effector function^{1,2}
- PD-L1 expression noted in NSCLC^{2,3}
- Increase of PD-L1 expression on tumor cells correlated with a decrease in the number of TILs in the same region⁴

 Preliminary correlation of PD-L1 expression by tumor cells with response to PD-1 blockade⁵

¹Ahmadzadeh M, et al. Blood 2009;114:1537-44. ²Zhang Y, et al. Cell Mol Immunol 2010;7:389-95. ³Mu C-Y et al. Med Oncol 2010. ⁴Konishi J, et al. Clin Cancer Res 2004;10:5094-100. ⁵Brahmer J, et al. J Clin Oncol 2010;28:3167-75

BMS-936558 (MDX-1106/ONO-4538)

- Fully human IgG4 anti-human PD-1 blocking Ab¹
- No known Fc function (ADCC, CDC)
- High affinity for PD-1 (K_D ~ 3 nM), blocks binding of both PD-L1 (B7-H1) and PD-L2 (B7-DC)
- Manageable safety profile and preliminary evidence of clinical activity in patients with treatment-refractory solid tumors in a first-in-human, single-dose, dose-escalation study¹

¹Brahmer J, et al. J Clin Oncol 2010;28:3167-75

Study Design: Phase I Multi-dose Regimen

CRPC with PD after 1-5 systemic therapies

Study Objectives and Conduct

• Primary

- Assessment of safety and tolerability of BMS-936558
- Secondary/Exploratory
 - Assessment of antitumor activity
 - Pharmacodynamic evaluation
- Accrual completed (Dec. 2011); patient assessment ongoing
- Current analysis for patients treated through Feb. 2012
 - 296 patients (122 with NSCLC) were evaluable for safety
 - 236 patients (76 with NSCLC) were evaluable for clinical activity

Baseline Characteristics

Baseline Characteristic	n=122			
Median age (range), yr	65 (38-85)			
Male, no. (%)	74 (61)			
Tumor histology, no. (%)*				
Squamous	47 (39)			
Non-squamous	73 (60)			
ECOG PS, no. (%) [†]				
0-1	117 (96)			
2	2 (2)			
Number of prior therapies, no. (%) [‡]				
1-2	49 (40)			
≥3	67 (55)			
Nature of prior therapy, no. (%)				
Platinum-based chemotherapy	115 (94)			
Tyrosine-kinase inhibitor	41 (34)			
Radiotherapy	40 (33)			

*Unknown: 2 (2%). [†]Not reported: 3 (2%). [‡]Not reported: 6 (5%).

BMS-936558-Related Adverse Events

	All Grades		Grades 3-4		
Drug-Related	Tot Pop*	NSCLC	Tot Pop	NSCLC [†]	
	No. (%) of Patients, All Doses				
Any adverse event	207 (70)	78 (64)	41 (14)	10 (8)	
Fatigue	72 (24)	22 (18)	5 (2)	2 (2)	
Rash	36 (12)	5 (4)			
Diarrhea	33 (11)	7 (6)	3 (1)	1 (1)	
Pruritus	28 (9)	6 (5)	1 (0.3)		
Nausea	24 (8)	9 (7)	1 (0.3)		
Appetite 🕇	24 (8)	12 (10)			
Hemoglobin 🕹	19 (6)	10 (8)	1 (0.3)		
Pyrexia	16 (5)	7 (6)			

*AEs occurring in \geq 5% of the total population.

⁺ The most common grade 3-4 AEs were fatigue, pneumonitis, and elevated AST (2 pts each). An additional 16 grade 3-4 drug-related AEs were observed and one or more occurred in a single patient.

Summary of Key Safety Results

- A maximum tolerated dose was not identified at doses up to 10 mg/kg
- There was no apparent relationship between drug dose and AE frequency in all treated patients or NSCLC patients
- In the total patient population across all tumor types:
 - Grade 3-4 drug-related AEs occurred in 14% of patients
 - Grade 1-2 pneumonitis was noted in 6 (2%) patients
 - Three drug-related deaths occurred in patients with pneumonitis (2 with NSCLC and 1 with CRC)
- In NSCLC patients:
 - Grade 3-4 drug-related AEs occurred in 8% of patients
 - Grade 1-2 pneumonitis was noted in 4 (3%) patients

Clinical Activity of BMS-936558 in NSCLC Patients

Рор	Dose (mg/kg)	Pts n	ORR n (%)	Duration of Response (mo)	SD ≥24 wk n (%)	PFSR at 24 wk (%)
ALL NSCLC	1-10	76	14 (18)	1.9+ to 30.8+	5 (7)	26
NSCLC	1	18	1 (6)	9.2+	1 (6)	16
	3	19	6 (32)	1.9+ to 30.8+	2 (11)	41
	10	39	7 (18)	3.7 to 14.8+	2 (5)	24

• ORR was assessed using modified RECIST v1.0

 3 NSCLC patients had a persistent reduction in baseline target lesions in the presence of new lesions but were not classified as responders for the ORR calculation

Clinical Activity by Histology, Efficacy Population

Devementer	BMS-936558 Dose, mg/kg					
Parameter	1	3	10			
ORR, No. patients* (%)						
Squamous	0	3 (50)	3 (43)			
	n=5	n=6	n=7			
Non-squamous	0	3 (23)	4 (13)			
	n=12	n=13	n=31			
SD ≥24 wk, No. patients (%)						
Squamous	0	0	0			
Non-squamous	1 (8)	2 (15)	2 (6)			
PFSR at 24 wk, (%)						
Squamous	0	50	43			
Non-squamous	14	37	21			

*1 patient of unknown histology who received 1mg/kg had an OR.

Changes in Target Lesions Over Time in NSCLC Patients

Changes in Target Lesions Over Time in NSCLC Patients

Response of Metastatic NSCLC (BMS-936558, 10mg/kg)

Pretreatment

2 months

4 months

- Initial progression in pulmonary lesions of a NSCLC patient with nonsquamous histology was followed by regression
- Dx '04, EGFR mutation +; Rx Gem/carbo, erlotinib, erlotinib + LBH589 (trial for T790 mutation), and lastly pemetrexed

Conclusions

- BMS-936558 can be administered safely in an outpatient setting to heavily pretreated NSCLC patients
- Durable clinical benefit was seen in both squamous and non-squamous NSCLC
- These findings support the importance of the PD-1 pathway in NSCLC therapy across different histologies
- Preliminary data correlating PD-L1 expression in pretreatment tumor biopsies with clinical outcomes will be further explored
- Clinical registration trials of BMS-936558 in patients with NSCLC are planned

Acknowledgments

- The patients and their families
- The study sites enrolling patients to the trial
- Alan Korman and colleagues of Bristol-Myers Squibb (BMS) who developed BMS-936558
- Support for this work from BMS, Ono Pharmaceutical Company, Ltd., and grants from the NIH and the Melanoma Research Alliance
- All authors contributed to and approved the presentation; assistance in the preparation of the slides was provided by Susan Leinbach, a professional medical writing consultant, funded by Bristol-Myers Squibb

Principal Investigators Participating on the Study

- Dr. S.J. Antonia, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dr. J.R. Brahmer, Sidney Kimmel Comprehensive Cancer Center at John Hopkins, Baltimore, MD
- Dr. R.D. Carvajal, Memorial Sloan-Kettering Cancer Center, New York, NY
- Dr. F.S. Hodi, Dana-Farber Cancer Institute, Boston, MA
- Dr. D.P. Lawrence, Massachusetts General Hospital Cancer Center, Boston, MA
- Dr. P. Leming, The Christ Hospital, Cincinnati, OH
- Dr. D. McDermott, Beth Israel Deaconess Medical Center, Boston, MA
- Dr. D. Mendelson, Pinnacle Oncology Hematology, Scottsdale, AZ
- Dr. J.D. Powderly, Carolina BioOncology Institute, Huntersville, NC
- Dr. D.C. Smith, University of Michigan, Ann Arbor, MI
- Dr. J. Sosman, Vanderbilt University Medical Center, Nashville, TN
- Dr. D.R. Spigel, Sarah Cannon Research Institute / Tennessee Oncology, PLLC, Nashville, TN
- Dr. M. Sznol, Yale Cancer Center, New Haven, CT